Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $f(x)=x^{2}+a x+b$, where $a, b \in \mathrm{R}$. If $f(x)=0$ has all its roots imaginary, then the roots of $f(x)+f^{\prime}(\mathrm{x})+f^{\prime \prime}(\mathrm{x})=0$ are
MathematicsQuadratic EquationVITEEEVITEEE 2009
Options:
  • A real and distinct
  • B imaginary
  • C equal
  • D rational and equal
Solution:
1959 Upvotes Verified Answer
The correct answer is: imaginary
$f(x)=x^{2}+a x+b$ has imaginary roots.
$$
\begin{array}{l}
\therefore \text { Discriminant, } D < 0 \Rightarrow a^{2}-4 b < 0 \\
f^{\prime}(x)=2 x+a \\
\Rightarrow f^{\prime \prime}(x)=2 \\
\text { Also, } f(x)+f^{\prime}(x)+f^{\prime \prime}(x)=0 ...(i)\\
\Rightarrow x^{2}+a x+b+2 x+a+2=0 \\
\Rightarrow x^{2}+(a+2) x+b+a+2=0 \\
\therefore x=\frac{-(a+2) \pm \sqrt{(a+2)^{2}-4(a+b+2)}}{2} \\
\quad=\frac{-(a+2) \pm \sqrt{a^{2}-4 b-4}}{2}
\end{array}
$$
Since, $a^{2}-4 b < 0$ $\therefore a^{2}-4 b-4 < 0$ Hence, Eq. (i) has imaginary roots.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.