Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $f(x)=x^2$ and $g(x)=\sin x$ for all $x \in R$. Then, the set of all $x$ satisfying $($ fogogof $)(x)=(\operatorname{gogof})(x)$, where $(f \circ g)(x)=f(g(x))$ is
MathematicsTrigonometric EquationsJEE Main
Options:
  • A
    $\pm \sqrt{n \pi}, n \in\{0,1,2, \ldots\}$
  • B
    $\pm \sqrt{n \pi}, n \in\{1,2, \ldots\}$
  • C
    $\frac{\pi}{2}+2 n \pi, n \in\{\ldots,-2,-1,0,1,2, \ldots\}$
  • D
    $2 n \pi, n \in\{\ldots,-2,-1,0,1,2, \ldots\}$
Solution:
2277 Upvotes Verified Answer
The correct answer is:
$\pm \sqrt{n \pi}, n \in\{1,2, \ldots\}$
$f(x)=x^2, g(x)=\sin x$
$(g \circ f)(x)=\sin x^2$
go(gof) $(x)=\sin \left(\sin x^2\right)$
$(f \circ g \circ g \circ f)(x)=\left(\sin \left(\sin x^2\right)\right)^2$
Again, $(g \circ f)(x)=\sin x^2$
(gogof) $(x)=\sin \left(\sin x^2\right)$
Given, $($ fogogof $)(x)=($ gogof $)(x)$
$\Rightarrow \quad\left(\sin \left(\sin x^2\right)\right)^2=\sin \left(\sin x^2\right)$
$\Rightarrow \sin \left(\sin x^2\right)\left\{\sin \left(\sin x^2\right)-1\right\}=0$
$\Rightarrow \sin \left(\sin x^2\right)=0$ or $\sin \left(\sin x^2\right)=1$
$\Rightarrow \sin x^2=0$ or $\sin x^2=\frac{\pi}{2}$
$\therefore \quad x^2=n \pi$
(i.e. not possible as $-1 \leq \sin \theta \leq 1$ )

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.