Search any question & find its solution
Question:
Answered & Verified by Expert
Let $f(x)=x^{3}+a x^{2}+b x+c$, where $a, b, c$ are real numbers. If $f(x)$ has a local minimum at $x=1$ and a local maximum at $x=-\frac{1}{3}$ and $f(2)=0$, then $\int_{-1}^{1} f(x) d x$ equals-
Options:
Solution:
1944 Upvotes
Verified Answer
The correct answer is:
$\frac{-14}{3}$
$f^{\prime}(x)=3\left(x^{2}-\frac{2}{3} x-\frac{1}{3}\right)=3 x^{2}-2 x-1$
$f(x)=x^{3}-x^{2}-x+\lambda$
$f(2)=8-4-2+\lambda=0 \Rightarrow \lambda=-2$
$f(x)=x^{3}-x^{2}-x-2$
$\int_{-1}^{1} f(x) d x=-2 \int_{0}^{1}\left(x^{2}+2\right) d x=-2\left(\frac{1}{3}+2\right)=\frac{-14}{3}$
$f(x)=x^{3}-x^{2}-x+\lambda$
$f(2)=8-4-2+\lambda=0 \Rightarrow \lambda=-2$
$f(x)=x^{3}-x^{2}-x-2$
$\int_{-1}^{1} f(x) d x=-2 \int_{0}^{1}\left(x^{2}+2\right) d x=-2\left(\frac{1}{3}+2\right)=\frac{-14}{3}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.