Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $f(x)=x^{3}+a x^{2}+b x+c$, where $a, b, c$ are real numbers. If $f(x)$ has a local minimum at $x=1$ and a local maximum at $x=-\frac{1}{3}$ and $f(2)=0$, then $\int_{-1}^{1} f(x) d x$ equals-
MathematicsApplication of DerivativesKVPYKVPY 2011 (SB/SX)
Options:
  • A $\frac{14}{3}$
  • B $\frac{-14}{3}$
  • C $\frac{7}{3}$
  • D $\frac{-7}{3}$
Solution:
1944 Upvotes Verified Answer
The correct answer is: $\frac{-14}{3}$
$f^{\prime}(x)=3\left(x^{2}-\frac{2}{3} x-\frac{1}{3}\right)=3 x^{2}-2 x-1$
$f(x)=x^{3}-x^{2}-x+\lambda$
$f(2)=8-4-2+\lambda=0 \Rightarrow \lambda=-2$
$f(x)=x^{3}-x^{2}-x-2$
$\int_{-1}^{1} f(x) d x=-2 \int_{0}^{1}\left(x^{2}+2\right) d x=-2\left(\frac{1}{3}+2\right)=\frac{-14}{3}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.