Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let for the 9th term in the binomial expansion of 3+6xn, in the increasing powers of 6x, to be the greatest for x=32, the least value of n is n0. If k is the ratio of the coefficient of x6 to the coefficient of x3, then k+n0 is equal to
MathematicsBinomial TheoremJEE Main
Solution:
1605 Upvotes Verified Answer
The correct answer is: 24

Given, 

3+6xn=3n1+2xn

Now if T9 is numerically greatest term, then T8T9T10

So, C7n3n-76x7C8n3n-86x8C9n3n-96x9

  n!n-7!7!9n!n-8!8!3·6xn!n-9!9!6x2

9n-7n-81832n-88369.894

7227n-7 and 279n-8

293n and n11

So, n0=10

For 3+6x10

Now Tr+1=Cr10310-r6xr

For coefficient of x6

r=6C61034·66

For coefficient of x3

r=3C31037·63

So, k=C610C310·34·6637·63=10!7!3!6!4!10!·8

k=14

 k+n0=24

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.