Search any question & find its solution
Question:
Answered & Verified by Expert
Let $\mathrm{g}$ be the greatest integer function. Then the function $f(\mathrm{x})=(\mathrm{g}(\mathrm{x}))^{2}-\mathrm{g}(\mathrm{x})$ is discontinuous at
Options:
Solution:
1497 Upvotes
Verified Answer
The correct answer is:
all integers except 1
$\mathrm{f}(\mathrm{x})=(\mathrm{g}(\mathrm{x}))^{2}-\mathrm{g}(\mathrm{x})$
Given, $\mathrm{g}(\mathrm{x})$ is greatest integer function. So, $\mathrm{g}(\mathrm{x})=[\mathrm{x}]$. $\therefore \mathrm{f}(\mathrm{x})=[\mathrm{x}]^{2}-[\mathrm{x}]$
$\mathrm{f}(\mathrm{x})$ is discontinuous at every integer except $\mathrm{x}=1$
Given, $\mathrm{g}(\mathrm{x})$ is greatest integer function. So, $\mathrm{g}(\mathrm{x})=[\mathrm{x}]$. $\therefore \mathrm{f}(\mathrm{x})=[\mathrm{x}]^{2}-[\mathrm{x}]$
$\mathrm{f}(\mathrm{x})$ is discontinuous at every integer except $\mathrm{x}=1$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.