Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $g(x)=\int_{x}^{2 x} \frac{f(t)}{t} d t$ where $x>0$ and $f$ be continuous function and $f(2 x)=f(x)$, then
MathematicsApplication of DerivativesWBJEEWBJEE 2021
Options:
  • A $g(x)$ is strictly increasing function
  • B $\mathrm{g}(\mathrm{x})$ is strictly decreasing function
  • C $\mathrm{g}(\mathrm{x})$ is constant function
  • D $\mathrm{g}(\mathrm{x})$ is not derivable function
Solution:
1006 Upvotes Verified Answer
The correct answer is: $\mathrm{g}(\mathrm{x})$ is constant function
$g(x)=\int_{x}^{2 x} \frac{f(t)}{t} d t$
$g^{\prime}(x)=\frac{f(2 x)}{2 x} \cdot 2^{\prime}-\frac{f(x)}{x} \cdot 1=\frac{f(2 x)-f(x)}{x}=\frac{f(x)-f(x)}{x}[\because f(2 x)=f(x)]$
$g^{\prime}(x)=0$
$g(x)=$ constant.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.