Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $I=\int_{0}^{1} \frac{x^{3} \cos 3 x}{2+x^{2}} d x$. Then
MathematicsDefinite IntegrationWBJEEWBJEE 2018
Options:
  • A $-\frac{1}{2} < I < \frac{1}{2}$
  • B $-\frac{1}{3} < I < \frac{1}{3}$
  • C $-1 < I < 1$
  • D $-\frac{3}{2} < I < \frac{3}{2}$
Solution:
1536 Upvotes Verified Answer
The correct answers are: $-\frac{1}{3} < I < \frac{1}{3}$
$I=\int_{0}^{1} \frac{x^{3} \cos 3 x}{2+x^{2}} d x$
Here, $\quad-1 < \cos 3 x < 1$
$\Rightarrow \quad-x^{3} < x^{3} \cos 3 x < x^{3}$
$\Rightarrow \quad \frac{-x^{3}}{x^{2}} < \frac{-x^{3}}{x} < \frac{-x^{3}}{2+x^{2}} < \frac{x^{3} \cos 3 x}{2+x^{2}}$
$ < \frac{x^{3}}{2+x^{2}} < \frac{x^{3}}{x} < \frac{x^{3}}{x^{2}}$
$\Rightarrow \quad \int_{0}^{1}-x^{2} d x < I < \int_{0}^{1} x^{2} d x$
$\Rightarrow$
$\left(\frac{-x^{3}}{3}\right)_{0}^{1} < I < \left(\frac{x^{3}}{3}\right)_{0}^{1}$
$\frac{-1}{3} < I < \frac{1}{3}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.