Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $\mathrm{I}=\int_0^1 \frac{\sin \mathrm{x}}{\sqrt{\mathrm{x}}} \mathrm{dx}$ and $\mathrm{J}=\int_0^1 \frac{\cos \mathrm{x}}{\sqrt{\mathrm{x}}} \mathrm{dx}$. Then which one of the following is true?
MathematicsDefinite IntegrationJEE MainJEE Main 2008
Options:
  • A
    $\mathrm{I}>\frac{2}{3}$ and $\mathrm{J}>2$
  • B
    $I < \frac{2}{3}$ and $J < 2$
  • C
    $\mathrm{I} < \frac{2}{3}$ and $\mathrm{J}>2$
  • D
    $I>\frac{2}{3}$ and $\mathrm{J} < 2$
Solution:
1807 Upvotes Verified Answer
The correct answer is:
$I < \frac{2}{3}$ and $J < 2$
$$
\begin{aligned}
& \mathrm{I}=\int_0^1 \frac{\sin x}{\sqrt{x}} \mathrm{dx} < \int_0^1 \frac{\mathrm{x}}{\sqrt{\mathrm{x}}} \mathrm{dx}=\int_0^1 \sqrt{\mathrm{x}} \mathrm{dx}=\left.\frac{2}{3} \mathrm{x}^{3 / 2}\right|_0 ^1=\frac{2}{3} \\
& \Rightarrow \mathrm{I} < \frac{2}{3} \\
& \mathrm{~J}=\int_0^1 \frac{\cos x}{\sqrt{\mathrm{x}}} \mathrm{dx} < \int_0^1 \frac{1}{\sqrt{\mathrm{x}}} \mathrm{dx}=\left.2 \sqrt{\mathrm{x}}\right|_0 ^1=2 \\
& \therefore \mathrm{J} \leq 2 .
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.