Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $\vec{\alpha}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}, \quad \vec{\beta}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ and $\vec{\gamma}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+6 \hat{\mathrm{k}}$ be
three vectors. If $\vec{\alpha}$ and $\vec{\beta}$ are both perpendicular to the
vector $\vec{\delta}$ and $\vec{\delta} \cdot \vec{\gamma}=10$, then what is the magnitude of $\vec{\delta}$ ?
MathematicsVector AlgebraNDANDA 2017 (Phase 2)
Options:
  • A $\sqrt{3}$ units
  • B $2 \sqrt{3}$ units
  • C $\frac{\sqrt{3}}{2}$ unit
  • D $\frac{1}{\sqrt{3}}$ unit
Solution:
1699 Upvotes Verified Answer
The correct answer is: $2 \sqrt{3}$ units
$\begin{aligned} \vec{\alpha} &=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}} \\ \vec{\beta} &=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}} \\ \vec{\gamma} &=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+6 \hat{\mathrm{k}} \end{aligned}$
Let $\vec{\delta}=a \hat{i}+b \hat{j}+c \hat{k}$
Since $\vec{\alpha}$ and $\vec{\delta}$ are perpendicular, $\vec{\alpha} \cdot \vec{\delta}=0$
$\Rightarrow \mathrm{a}+2 \mathrm{~b}-\mathrm{c}=0$
$\vec{\beta}$ and $\vec{\delta}$ are perpendicular, $\vec{\beta} \cdot \vec{\delta}=0$
$\Rightarrow 2 \mathrm{a}-\mathrm{b}+3 \mathrm{c}=0$
from $(1),(2), \frac{a}{5}=\frac{b}{-5}=\frac{c}{-5} \Rightarrow \frac{a}{1}=\frac{b}{-1}=\frac{c}{-1}=x($ say $)$
So, $a=x, b=-x, c=-x$
Also, it is given $\vec{\gamma} \cdot \vec{\delta}=10$
$\Rightarrow 2 \mathrm{a}+\mathrm{b}+6 \mathrm{c}=10$
$\Rightarrow 2 x-x-6 x=10$
$\Rightarrow-5 x=10$
$\Rightarrow x=-2$
$\therefore \vec{\delta}=-2 \hat{i}+2 \hat{j}+2 \hat{k} .$
$\therefore|\vec{\delta}|=\sqrt{4+4+4}=\sqrt{12}=2 \sqrt{3}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.