Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let I=-π4π412-cos2x3π+log4+sinx4-sinxdx. Given that dx1+kx2=1ktan-1kx+c,tan-10=0 and tan-13=π3. Then 3I2=
MathematicsDefinite IntegrationTS EAMCETTS EAMCET 2022 (18 Jul Shift 1)
Options:
  • A 4
  • B 9
  • C 16
  • D 1
Solution:
1672 Upvotes Verified Answer
The correct answer is: 4

Let

I=-π4π412-cos2x3π+log4+sinx4-sinxdx

I=3π-π4π412-cos2xdx+-π4π4log4+sinx4-sinx12-cos2xdx

I=3π-π4π412-cos2xdx+0

Since, log4+sinx4-sinx12-cos2x is an odd function and -aafxdx=20afxdx if f-x=fx0                  if f-x=-fx.

I=6π0π412-cos2xdx

I=6π0π412-1-tan2x1+tan2xdx

I=6π0π4sec2x1+3tan2xdx

Put tanx=tsec2xdx=dt

I=6π0111+3t2dt

I=2π01113+t2dt

I=23πtan3t01

I=23πtan3-0

I=23π×π3

I=23

3I2=4

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.