Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $I_{n}=\int_{0}^{1}(\log x)^{n} d x$, where $n$ is a non-negative integer. Then $I_{2001}-2011 I_{2010}$ is equal to-
MathematicsDefinite IntegrationKVPYKVPY 2010 (SB/SX)
Options:
  • A $\mathrm{I}_{1000}+999 \mathrm{I}_{998}$
  • B $\mathrm{I}_{890}+890 \mathrm{I}_{889}$
  • C $\mathrm{I}_{100}+100 \mathrm{I}_{99}$
  • D $\mathrm{I}_{53}+54 \mathrm{I}_{52}$
Solution:
1025 Upvotes Verified Answer
The correct answer is: $\mathrm{I}_{100}+100 \mathrm{I}_{99}$
$\quad I_{n}=\int_{1}^{e} 1 .\left(\log _{1} x\right)^{n} d x$
$$
\begin{array}{l}
I_{n}=\left.(\log x)^{n} x\right|_{1} ^{e}-\int_{1}^{e} \frac{n(\log x)^{n-1}}{x} \cdot x d x \\
I_{n}=e-0-n I_{n-1} \\
I_{n}+n I_{n-1}=e \\
I_{2001+2011} \quad I_{2010}=e \\
\square_{100}+100 \mathrm{I}_{99}=e
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.