Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $\mathrm{I}(\mathrm{n})=\mathrm{n}^{\mathrm{n}}, \mathrm{J}(\mathrm{n})=1.3 .5 \ldots . .(2 \mathrm{n}-1)$ for all $(\mathrm{n}>1), \mathrm{n} \in \mathrm{N}$, then
MathematicsSequences and SeriesWBJEEWBJEE 2020
Options:
  • A $\mathrm{I}(\mathrm{n})>\mathrm{J}(\mathrm{n})$
  • B $\mathrm{I}(\mathrm{n}) < \mathrm{J}(\mathrm{n})$
  • C $\mathrm{I}(\mathrm{n})=\mathrm{J}(\mathrm{n})$
  • D $\mathrm{I}(\mathrm{n})=\frac{1}{2} \mathrm{~J}(\mathrm{n})$
Solution:
1661 Upvotes Verified Answer
The correct answer is: $\mathrm{I}(\mathrm{n})>\mathrm{J}(\mathrm{n})$
Hint:
$\mathrm{AM} \geq \mathrm{GM}$
$\frac{1+3+5+7+\ldots+(2 n-1)}{\mathrm{n}}>(\mathrm{J}(\mathrm{n}))^{\frac{1}{n}}, \quad \frac{\mathrm{n}^{2}}{\mathrm{n}}>(\mathrm{J}(\mathrm{n}))^{\frac{1}{n}}, \quad \mathrm{n}^{\mathrm{n}}>\mathrm{J}(\mathrm{n}), \mathrm{I}(\mathrm{n})>\mathrm{J}(\mathrm{n})$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.