Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let M bea $3 \times 3 \mathrm{n} \times \mathrm{n}$ -singular matrix with $\operatorname{det}(\mathrm{M})$ $=\alpha$. If $\left[\mathrm{M}^{-1}\right.$ adj $(\mathrm{adj} (\mathrm{M})]=\mathrm{KI}$, then the value of $\mathrm{K}$ is
MathematicsMatricesJEE Main
Options:
  • A 1
  • B $\alpha$
  • C $\alpha^{2}$
  • D $\alpha^{3}$
Solution:
2748 Upvotes Verified Answer
The correct answer is: $\alpha$
We know that, $M(\operatorname{adj} M)=|M|$ I

Replacing $\mathrm{M}$ by adj $\mathrm{M},$ we get $\operatorname{adj} M[\operatorname{adj}(\operatorname{adj} M)=\operatorname{det}(\operatorname{adj} M) I$

$=\operatorname{det}(M) M^{-1}\left[\operatorname{adj}(\operatorname{adj} M)=\alpha^{2} 1\right.$

$$

\left[\because \mathrm{M}^{-1}=\frac{1}{|\mathrm{M}|} \operatorname{adj}(\mathrm{M})\right]

$$

$\Rightarrow \alpha \mathrm{M}^{-1}[\operatorname{adj}(\operatorname{adj} M)]=\alpha^{2} \mathrm{I}$

$\Rightarrow \mathrm{M}^{-1}[\mathrm{adj}(\operatorname{adj} \mathrm{M})]=\alpha \mathrm{I}$

But $M^{-1}[\operatorname{adj}(\operatorname{adj} M)]=K I$

Hence, $\mathrm{K}=\alpha$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.