Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let \(\mathrm{I}_1=\int_1^2 \frac{1}{\sqrt{1+\mathrm{x}^2}} \mathrm{dx}\) and \(\mathrm{I}_2=\int_1^2 \frac{1}{x} d x\), then
MathematicsDefinite IntegrationBITSATBITSAT 2011
Options:
  • A \(\mathrm{I}_1 > \mathrm{I}_2\)
  • B \(\mathrm{I}_2 > \mathrm{I}_1\)
  • C \(\mathrm{I}_1=\mathrm{I}_2\)
  • D None of these
Solution:
2852 Upvotes Verified Answer
The correct answer is: \(\mathrm{I}_2 > \mathrm{I}_1\)
If \(I_1=\int_1^2 \frac{\mathrm{dx}}{\sqrt{1+\mathrm{x}^2}}, I_2=\int_1^2 \frac{\mathrm{dx}}{\mathrm{x}}\)
\(I_1=\ell n \left(\frac{2+\sqrt{5}}{1+\sqrt{2}}\right), \quad I_2=\ell n 2 \Rightarrow I_1 < I_2\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.