Search any question & find its solution
Question:
Answered & Verified by Expert
Let \(\mathrm{I}_1=\int_1^2 \frac{1}{\sqrt{1+\mathrm{x}^2}} \mathrm{dx}\) and \(\mathrm{I}_2=\int_1^2 \frac{1}{x} d x\), then
Options:
Solution:
2852 Upvotes
Verified Answer
The correct answer is:
\(\mathrm{I}_2 > \mathrm{I}_1\)
If \(I_1=\int_1^2 \frac{\mathrm{dx}}{\sqrt{1+\mathrm{x}^2}}, I_2=\int_1^2 \frac{\mathrm{dx}}{\mathrm{x}}\)
\(I_1=\ell n \left(\frac{2+\sqrt{5}}{1+\sqrt{2}}\right), \quad I_2=\ell n 2 \Rightarrow I_1 < I_2\)
\(I_1=\ell n \left(\frac{2+\sqrt{5}}{1+\sqrt{2}}\right), \quad I_2=\ell n 2 \Rightarrow I_1 < I_2\)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.