Search any question & find its solution
Question:
Answered & Verified by Expert
Let \(M=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\) and \(N=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]\). Then \(N M^{10} N^{-1}=\)
Options:
Solution:
1173 Upvotes
Verified Answer
The correct answer is:
\(\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]\)
\(\begin{aligned}
M & =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \\
M^2 & =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \\
M^2 & =\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \\
M^3 & =\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right] \\
& \vdots \\
M^{10} & =\left[\begin{array}{ll}
1 & 10 \\
0 & 1
\end{array}\right] \\
N & =\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \\
|N| & =2-0=2 \\
\operatorname{Adj}^N & =\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \\
N^{-1} & =\frac{1}{|N|} \text { Adj A } \\
N^{-1} & =\frac{1}{2}\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \\
N^{-1} & =\left[\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right]
\end{aligned}\)
Consider,
\(\begin{aligned}
\mathbf{N} \cdot \mathbf{M}^{10} \cdot \mathbf{N}^{-1} & =\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 10 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 10 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 5 \\
0 & 1
\end{array}\right]
\end{aligned}\)
Hence, option (a) is correct.
M & =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \\
M^2 & =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \\
M^2 & =\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] \\
M^3 & =\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right] \\
& \vdots \\
M^{10} & =\left[\begin{array}{ll}
1 & 10 \\
0 & 1
\end{array}\right] \\
N & =\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \\
|N| & =2-0=2 \\
\operatorname{Adj}^N & =\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \\
N^{-1} & =\frac{1}{|N|} \text { Adj A } \\
N^{-1} & =\frac{1}{2}\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \\
N^{-1} & =\left[\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right]
\end{aligned}\)
Consider,
\(\begin{aligned}
\mathbf{N} \cdot \mathbf{M}^{10} \cdot \mathbf{N}^{-1} & =\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 10 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 10 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 5 \\
0 & 1
\end{array}\right]
\end{aligned}\)
Hence, option (a) is correct.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.