Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $P(4,3)$ be a point on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\mathrm{1}$. If the normal at $P$ intersects the $X$ -axis at (16,0) , then the eccentricity of the hyperbola is
MathematicsHyperbolaWBJEEWBJEE 2019
Options:
  • A $\frac{\sqrt{5}}{2}$
  • B 2
  • C $\sqrt{2}$
  • D $\sqrt{3}$
Solution:
1695 Upvotes Verified Answer
The correct answer is: 2
Given hyperbola equation
$H: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
$P(4,3) $ lie on $H$
$\Rightarrow$ $\frac{16}{a^{2}}-\frac{9}{b^{2}}=1$
Normal equation at $P(4,3)$ for $H$
$$
a^{2} y_{1}\left(x-x_{1}\right)+b^{2} x_{1}\left(y-y_{1}\right)=0
$$
$\Rightarrow \quad 3 a^{2}(x-4)+4 b^{2}(y-3)=0$
Normal cuts the $X$ -axis at (16,0) $\Rightarrow \quad 3 a^{2}(16-4)+4 b^{2}(0-3)=0$
$\Rightarrow \quad 3 a^{2} 12+4 b^{2}(-3)=0$
$\Rightarrow$ $36 a^{2}-12 b^{2}=0$
$\Rightarrow$ $3 a^{2}-b^{2}=0$
$\Rightarrow$ $3 a^{2}=b^{2}$
$\therefore$ Eccentricity of the hyperbola is $e=\frac{\sqrt{a^{2}+b^{2}}}{a}$
$=\frac{\sqrt{a^{2}+3 a^{2}}}{a}=\frac{\sqrt{4 a^{2}}}{a}=\frac{2 a}{a}=2$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.