Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let px represent the probability mass function of a Poisson distribution. If its mean λ=3.725, then value of x at which px is maximum is
MathematicsProbabilityTS EAMCETTS EAMCET 2020 (09 Sep Shift 1)
Options:
  • A 2
  • B 3
  • C 4
  • D 5
Solution:
1123 Upvotes Verified Answer
The correct answer is: 3

We know that the Poisson distribution is given by

px=e-λλxx!

where, x=0, 1, 2, 3, 4

Since, e-λ is a positive constant therefore it is sufficient to find the maxima of λxx!.

Now, when x=0λxx!=1

Now, we have to find maxima of λxx! for x=1, 2, 3, 4, ....

When x=1λxx!=λ11!=

Now, we know that logey, y>0 is an increasing function. Therefore, maximum of λxx! occurs when maximum of logeλxx! occurs. Now,

logeλxx!=xlogeλ-logex!

                    =xlogeλ-logex+logex-1+logex-2+...+loge2+loge1

                   =xlogeλ-i=1xlogei

           =logeλ-loge1+logeλ-loge2+logeλ-loge3+....+logeλ-logex

Now, from above it is clear that when x=1 ,2, 3 then logeλxx!>0 but if we start taking terms from x=4, 5, 6, .... then logeλxx!<0. Hence, the function start minimizing. So, maximum value of λxx! occurs when x=3.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.