Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let \(\phi(x)=\frac{x}{\left(x^2+1\right)(x+1)}\). If \(a, b\) and \(c\) are the roots of the equation \(x^3-3 x+\lambda=0,(\lambda \neq 0)\). Then, \(\phi(a) \phi(b) \phi(c)=\)
MathematicsQuadratic EquationAP EAMCETAP EAMCET 2019 (22 Apr Shift 1)
Options:
  • A \(\lambda\)
  • B \(\frac{-\lambda}{(\lambda+2)\left(\lambda^2+16\right)}\)
  • C \(\frac{\lambda}{(\lambda+2)}\)
  • D \(\frac{\lambda}{(\lambda+2)\left(\lambda^2+16\right)}\)
Solution:
1579 Upvotes Verified Answer
The correct answer is: \(\frac{\lambda}{(\lambda+2)\left(\lambda^2+16\right)}\)
\(\begin{aligned}
& \text {Given, } \phi(x)=\frac{x}{\left(x^2+1\right)(x+1)} \\
& \therefore \phi(a) \phi(b) \phi(c)=\frac{a b c}{(1+a)(1+b)(1+c)\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)} \\
& =\frac{a b c}{(1+a+b+c+a b+b c+c a+a b c)\left(1+a^2+b^2+c^2\right.} \\
& \left.\quad+a^2 b^2+b^2 c^2+c^2 a^2+(a b c)^2\right)
\end{aligned}\)
Also, given that \(a, b\) and \(c\) are roots of cubic equation
\(\begin{aligned}
x^3-3 x+\lambda & =0. \\
a b+b c+c a & =-3 \quad \ldots (i) \\
a+b+c & =0 \quad \ldots (ii)
\end{aligned}\)
and \(a b c=-\lambda\)...(iii)
Squaring Eq. (ii), we get, \((a+b+c)^2=0\)
\(\begin{aligned}
a^2+b^2+c^2+2(a b+b c+c a) & =0 \\
a^2+b^2+c^2 & =6
\end{aligned}\)
Similarly, \(a^2 b^2+b^2 c^2+c^2 a^2=9\) (by solving)
Put these values in \(\phi(a) \phi(b) \phi(c)\), we get
\(\begin{aligned}
& \frac{-\lambda}{(1+0-3-\lambda)\left(1+6+9+\lambda^2\right)} \\
& \frac{-\lambda}{(-2-\lambda)\left(\lambda^2+16\right)}=\frac{\lambda}{(\lambda+2)\left(\lambda^2+16\right)}
\end{aligned}\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.