Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $S$ be the circle in $x y$-plane which touches the $x$-axis at point $A$, the $y$-axis at point $B$ and the unit circle $x^{2}+y^{2}=1$ at point $C$ externally. If $O$ denotes the origin, then the angle OCA equals
MathematicsCircleKVPYKVPY 2017 (5 Nov SA)
Options:
  • A $\frac{5 \pi}{8}$
  • B $\frac{\pi}{2}$
  • C $\frac{3 \pi}{4}$
  • D $\frac{3 \pi}{5}$
Solution:
2053 Upvotes Verified Answer
The correct answer is: $\frac{5 \pi}{8}$


$\therefore$ Slope of $O M=1$ $\therefore \angle \mathrm{COA}=45^{\circ}$ $\mathrm{C}\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
Now OM $=O C+C M$
$\sqrt{2} \mathrm{~h}=1+\mathrm{h}$
Squaring
$\begin{array}{l}
2 h^{2}=h^{2}+1+2 h \\
h^{2}-2 h-1=0
\end{array}$
$\mathrm{h}=\frac{2 \pm \sqrt{8}}{2} \Rightarrow \mathrm{h}=1 \pm \sqrt{2}$
$\mathrm{~A}(1+\sqrt{2}, 0)$
Slope of $A C=\frac{0-\frac{1}{\sqrt{2}}}{1+\sqrt{2}-\frac{1}{\sqrt{2}}}=-\frac{1}{\sqrt{2}+1}=-(\sqrt{2}-1)$
$=-\tan 22 \frac{1}{2}^{\circ}=\tan \left(180-22 \frac{1}{2}\right)^{\circ}=\tan 157 \frac{1}{2}^{\circ}$
$\therefore \angle \mathrm{CAX}=157 \frac{1}{2}^{\circ}$
$\therefore \angle \mathrm{OCA}=157 \frac{1}{2}^{\circ}-45^{\circ}=112 \frac{1}{2}^{\circ}=\frac{5 \pi}{8}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.