Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $S_{n}$ denote the sum of the $n$ terms of an $\mathrm{AP}$ and $3 \mathrm{~S}_{\mathrm{n}}=\mathrm{S}_{2 \mathrm{n}}$.
What is $\mathrm{S}_{3 \mathrm{n}}=\mathrm{S}_{\mathrm{n}}$ equal to ?
MathematicsSequences and SeriesNDANDA 2014 (Phase 2)
Options:
  • A $4: 1$
  • B $6: 1$
  • C $8: 1$
  • D $10: 1$
Solution:
1146 Upvotes Verified Answer
The correct answer is: $6: 1$
Given, $\mathrm{S}_{\mathrm{n}}=$ Sum of first n terms of an AP.
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{h}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$ or $\mathrm{S}_{2 \mathrm{n}}=\frac{2 \mathrm{n}}{2}[2 \mathrm{a}+(2 \mathrm{n}-1) \mathrm{d}]$
Similarly, $\quad S_{3 n}=\frac{3 n}{2}[3 a+(3 n-1) d]$
According to direction, $3 \mathrm{~S}_{\mathrm{n}}=2 \mathrm{~S}_{2 \mathrm{n}}$
Putting the value of $\mathrm{S}_{\mathrm{n}}$ and $\mathrm{S}_{2 \mathrm{n}}$ in above equation. $3\left(\frac{\mathrm{n}}{2}\right)[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]=2\left(\frac{\mathrm{n}}{2}\right)[2 \mathrm{a}+(2 \mathrm{n}-1) \mathrm{d}]$
$6 a+3(n-1) d=4 a+2(n-1) d$
$2 \mathrm{a}=\mathrm{d}(\mathrm{n}+1)$
$\therefore \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[\mathrm{~d}(\mathrm{n}+1)+\mathrm{d}(\mathrm{n}-1)]$
$=\frac{\mathrm{n}}{2}[\mathrm{dn}+\mathrm{d}+\mathrm{dn}-\mathrm{d}]$
$=\frac{\mathrm{n}}{2}(2 \mathrm{dn})=\mathrm{n}^{2} \mathrm{~d}$
Now, $\mathrm{S}_{2 \mathrm{n}}=\mathrm{n}[\mathrm{d}(\mathrm{n}+1)+(2 \mathrm{n}-1) \mathrm{d}]=3 \mathrm{n}^{2} \mathrm{~d}$
$\mathrm{S}_{3 \mathrm{n}}=\frac{3 \mathrm{n}}{2}[\mathrm{~d}(\mathrm{n}+1+3 \mathrm{n}-1)]=6 \mathrm{n}^{2} \mathrm{~d}$
Hence, $\frac{\mathrm{S}_{3 \mathrm{n}}}{\mathrm{S}_{\mathrm{n}}}=\frac{6 \mathrm{n}^{2} \mathrm{~d}}{\mathrm{n}^{2} \mathrm{~d}}=\frac{6}{1}=6: 1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.