Search any question & find its solution
Question:
Answered & Verified by Expert
Let $[t]$ denot the greatest integer less than or equal to $t$. Then the value of $\int_1^2|2 x-[3 x]| d x$ is
Options:
Solution:
2369 Upvotes
Verified Answer
The correct answer is:
$1$
$\begin{aligned} & \int_1^2|2 x-[3 x]| d x=\int_1^{\frac{4}{3}}|2 x-3| d x+\int_{\frac{4}{3}}^{\frac{5}{3}}|2 x-4| d x+\int_{\frac{5}{3}}^2|2 x-5| d x \\ & =\int_1^{\frac{4}{3}}(3-2 x) d x+\int_{\frac{4}{3}}^{\frac{5}{3}}(4-2 x) d x+\int_{\frac{5}{3}}^2(5-2 x) d x \\ & =\left[3 x-x^2\right]_1^{4 / 3}+\left[4 x-x^2\right]_{4 / 3}^{5 / 3}+\left[5 x-x^2\right]_{5 / 3}^2 \\ & =3[x]_1^{4 / 3}+[4 x]_{4 / 3}^{5 / 3}+5\left[x^2\right]_{5 / 3}^2-\left[x^2\right]_1^2 \\ & =(3+4+5) \times \frac{1}{3}-\left(2^2-1^2\right) \\ & =4-3=1\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.