Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let the foci of the ellipse $\frac{x^{2}}{9}+y^{2}=1$ subtend a right angle at a point $P$. Then, the locus of $P$ is
MathematicsEllipseWBJEEWBJEE 2012
Options:
  • A $x^{2}+y^{2}=1$
  • B $x^{2}+y^{2}=2$
  • C $x^{2}+y^{2}=4$
  • D $x^{2}+y^{2}=8$
Solution:
2855 Upvotes Verified Answer
The correct answer is: $x^{2}+y^{2}=8$
$\frac{x^{2}}{9}+\frac{y^{2}}{1}=1 \Rightarrow e=\sqrt{1-\frac{1}{9}}=\frac{2 \sqrt{2}}{3}$
0) ie, $(\pm 2 \sqrt{2}, 0)$ Two foci are $(\pm a e,$ Let $P(h, k)$ by any point on the ellipse
$\therefore$
$\frac{k-0}{h-2 \sqrt{2}} \times \frac{k-0}{h+2 \sqrt{2}}=-1$
[From given condition]
$\Rightarrow \quad h^{2}-8=-k^{2}$
$\Rightarrow \quad x^{2}+y^{2}=8$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.