Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let the tangent at any point P on a curve passing through the points 1,1 and 110,100, intersect positive x-axis and y-axis at the points A and B respectively. If P A: P B=1: k and y=yx is the solution of the differential equation edydx=kx+k2,y0=k, then 4y1-5loge3 is equal to _______________
MathematicsDifferential EquationsJEE MainJEE Main 2023 (10 Apr Shift 2)
Solution:
1895 Upvotes Verified Answer
The correct answer is: 5

Given,

The tangent at any point P on a curve passing through the points 1,1 and 110,100, intersect positive x-axis and y-axis at the points A and B respectively,

And  P A: P B=1: k and y=yx is the solution of the differential equation edydx=kx+k2,y0=k,

Now on plotting the diagram we get,

Equation of tangent at Px, y is :

Y-y=dydxX-x

Coordinate of A=x-ydxdy,0

Coordinate of B=0,y-xdydx

  x,y=kx-kydxdyk+1,y-xdydxk+1

So, y=y-xdydxk+1

yk+1=y-xdydx

ky=-xdydx

kdxx=-dyy

Now integrating both side, we get

kln|x|+ln|y|=lnC  ......i

Now given equation i passes through 1, 1 and 110,100

So, C = 1 and k = 2

Now putting the value of k, we get

edydx=kx+k2

edydx=2x+1 as k=2

dydx=ln2x+1

Integrating the above equation we get,

y=122x+1ln2x+1-1+C

And the above equation passes through 0, 2

C=52

So, 2y=2x+1ln2x+1-1+5

2y1=3ln3-1+5

2y1=3ln3+2

Hence, 4y1-5loge3=23ln3+2-5ln3

4y1-5loge3=6ln3+4-5ln3

4y1-5loge3=4+ln35

Note: This question was bonus in Jee Mains 2023 April session.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.