Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $\mathrm{V}_{1}$ be the volume of a given right circular cone with $\mathrm{O}$ as the centre of the base and $\mathrm{A}$ as its apex. Let $\mathrm{V}_{2}$ be the maximum volume of the right circular cone inscribed in the given cone whose apex is $\mathrm{O}$ and whose base is parallel to the base of the given cone. Then the ratio $\mathrm{V}_{2} / \mathrm{V}_{1}$ is-
MathematicsApplication of DerivativesKVPYKVPY 2010 (SB/SX)
Options:
  • A $\frac{3}{25}$
  • B $\frac{4}{9}$
  • C $\frac{4}{27}$
  • D $\frac{8}{27}$
Solution:
1881 Upvotes Verified Answer
The correct answer is: $\frac{4}{27}$


$\triangle \mathrm{ABC}$ and $\triangle \mathrm{AOP}$ are similar
$$
\begin{array}{c}
\frac{\mathrm{h}}{\mathrm{r}}=\frac{\mathrm{H}}{\mathrm{R}} \quad \Rightarrow \mathrm{h}=\frac{\mathrm{rH}}{\mathrm{R}} \\
\mathrm{V}_{2}=\frac{1}{3} \pi \mathrm{r}^{2}(\mathrm{H}-\mathrm{h})=\frac{\pi}{3} \mathrm{r}^{2} \mathrm{H}\left(1-\frac{\mathrm{r}}{\mathrm{R}}\right)=\frac{\pi \mathrm{H}}{3}\left(\mathrm{r}^{3}-\frac{\mathrm{r}^{3}}{\mathrm{R}}\right) \\
\frac{\mathrm{d} \mathrm{V}_{2}}{\mathrm{dr}}=2 \mathrm{r}-\frac{3 \mathrm{r}^{2}}{\mathrm{R}}=0 \quad \mathrm{r}=\frac{2 \mathrm{R}}{3} \\
\mathrm{~V}_{2 \max }=\frac{4 \pi \mathrm{R}^{2} \mathrm{H}}{81}
\end{array}
$$
$$
\begin{array}{l}
\mathrm{V}_{1}=\frac{\pi \mathrm{R}^{2} \mathrm{H}}{3} \\
\therefore \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{4}{27}
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.