Search any question & find its solution
Question:
Answered & Verified by Expert
Let $\mathbf{V}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}}$ and $\mathbf{W}=\hat{\mathbf{i}}+3 \hat{\mathbf{k}}$. If $\mathbf{U}$ is a unit vector, then the maximum value of $[\mathbf{U} \mathbf{V} \mathbf{W}]$ is
Options:
Solution:
1830 Upvotes
Verified Answer
The correct answer is:
$\sqrt{59}$
$\begin{aligned} \text { Given, } \mathbf{V} & =2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-\hat{\mathbf{k}} \\ \mathbf{W} & =\hat{\mathbf{i}}+3 \hat{\mathbf{k}} \\ \mathbf{V} \times \mathbf{W} & =\left|\begin{array}{ccc}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 2 & 1 & -1 \\ 1 & 0 & 3\end{array}\right|=3 \hat{\mathbf{i}}-7 \hat{\mathbf{j}}-\hat{\mathbf{k}}\end{aligned}$
Here, $\mathbf{U}$ is unit vector
$\begin{aligned}
\therefore \text { Maximum value of } \mathbf{U} \cdot(\mathbf{V} & \times \mathbf{W})=|\mathbf{U}| \cdot|\mathbf{V} \times \mathbf{W}| \\
& =1 \times \sqrt{9+49+1}=\sqrt{59}
\end{aligned}$
Here, $\mathbf{U}$ is unit vector
$\begin{aligned}
\therefore \text { Maximum value of } \mathbf{U} \cdot(\mathbf{V} & \times \mathbf{W})=|\mathbf{U}| \cdot|\mathbf{V} \times \mathbf{W}| \\
& =1 \times \sqrt{9+49+1}=\sqrt{59}
\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.