Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let \( \vec{a}=\hat{i}-2 \hat{j}+\hat{k} \) and \( \vec{b}=\hat{i}-\hat{j}+\hat{k} \), be two vectors. If \( \vec{c} \), is a vector such that \( \vec{b} \times \vec{c}=\vec{b} \times \vec{a} \) and \( \vec{c} \cdot \vec{a}=0 \)
then \( \vec{c} \cdot \vec{b} \), is equal to.
MathematicsVector AlgebraJEE Main
Options:
  • A \( -\frac{3}{2} \)
  • B \( \frac{1}{2} \)
  • C \( -\frac{1}{2} \)
  • D \( -1 \)
Solution:
1506 Upvotes Verified Answer
The correct answer is: \( -\frac{1}{2} \)

a×b×c=a×b×a
-a.bc=a.ab-a.ba

Using given information a=i^-2j^+k^ and b=i^-j^+k^ , we can write a.b=4a.a=6
-4c=6i^-j^+k^-4i^-2j^+k^
-4c=2i^+2j^+2k^
c=-12i^+j^+k^
b.c=-12.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.