Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $\mathrm{x}>0$ be a fixed real number. Then the integral $\int_{0}^{\infty} e^{-t}|x-t| d t$ is equal to.
MathematicsDefinite IntegrationKVPYKVPY 2015 (SB/SX)
Options:
  • A $x+2 e^{-x}-1$
  • B $x-2 e^{-x}+1$
  • C $x+2 e^{-x}+1$
  • D $-x-2 e^{-x}+1$
Solution:
1939 Upvotes Verified Answer
The correct answer is: $x+2 e^{-x}-1$
$\int_{0}^{x} \mathrm{e}^{-t}|(\mathrm{x}-\mathrm{t})| \mathrm{dt}$
$=\int_{0}^{\mathrm{x}} \mathrm{e}_{11}^{-1}(\mathrm{x}-\mathrm{t}) \mathrm{dt}+\int_{\mathrm{x}}^{x} \mathrm{e}_{11}^{-1}(\mathrm{t}-\mathrm{x}) \mathrm{dt}$
$\left\{-(\mathrm{x}-\mathrm{t}) \mathrm{e}^{-t}-(-1) \mathrm{e}^{-\mathrm{t}}\right\}_{0}^{\mathrm{x}}-\left\{-(\mathrm{x}-\mathrm{t}) \mathrm{e}^{-\mathrm{t}}+\mathrm{e}^{-t}\right)_{\mathrm{x}}$
$=\mathrm{x}+2 \mathrm{e}^{-x}-1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.