Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $X=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$, Let $Y$ be a $2 \times 2$ real matrix satisfying the condition $X Y=Y X$. Then the smallest possible value of $\operatorname{det}(Y)$ is
MathematicsMatricesAP EAMCETAP EAMCET 2021 (23 Aug Shift 2)
Options:
  • A $0$
  • B $-2$
  • C $-1$
  • D $\frac{1}{2}$
Solution:
1655 Upvotes Verified Answer
The correct answer is: $0$
$X=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right], Y_{2 \times 2}=?, X Y=Y X$
Let $Y=\left[\begin{array}{ll}x & y \\ z & t\end{array}\right]$ such that
$X Y=Y Z$
$\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}x & y \\ z & t\end{array}\right]=\left[\begin{array}{cc}x & y \\ z & t\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$
$\Rightarrow\left[\begin{array}{ll}x-z & y-t \\ x+z & y+t\end{array}\right]=\left[\begin{array}{ll}x+y & -x+y \\ z+t & -z+t\end{array}\right]$
$\Rightarrow \quad x+z=z+t,$
$y-t=-x+y, x-z=x+y$
$\Rightarrow \quad x=t \Rightarrow y=-z$
$Y=\left[\begin{array}{cc}t & -z \\ z & t\end{array}\right]$
$\therefore|Y|=t^2+z^2$ which is always non-negative for
$t, Z \in R$.
$\therefore$ Smallest value of $|Y|=0$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.