Search any question & find its solution
Question:
Answered & Verified by Expert
Let $x$ be a real number and $-2 < x < 2$. When $\frac{x \quad 1}{(x+3)(x-2)}$ is expanded in powers of $x$, then the coefficient of $x^3$ is
Options:
Solution:
1314 Upvotes
Verified Answer
The correct answer is:
$-\frac{55}{1296}$
$\begin{aligned} & \text { } \frac{x+1}{(x+3)(x-2)}=\frac{3}{5} \frac{1}{(x-2)}+\frac{2}{5} \frac{1}{(x+3)} \\ & =-\frac{3}{5 \times 2}\left(1-\frac{x}{2}\right)^{-1}+\frac{2}{5 \times 3}\left(1+\frac{x}{3}\right)^{-1} \\ & \Rightarrow \frac{x+1}{(x+3)(x-2)}=-\frac{3}{10}\left(1+\left(\frac{x}{2}\right)+\left(\frac{x}{2}\right)^2+\left(\frac{x}{2}\right)^3+\right) \\ & +\frac{2}{5}\left(1-\left(\frac{x}{3}\right)+\left(\frac{x}{3}\right)^2-\left(\frac{x}{3}\right)^3+\ldots\right) \\ & \therefore \text { The coefficient of } x^3=-\frac{3}{10}\left(\frac{1}{2}\right)^3-\frac{2}{15} \times \frac{1}{27} \\ & =-\frac{55}{1296}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.