Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $X$ be binomial variate with parameters $n=6$ and $p$. If $4 P(X=4)=P(X=2)$, then $p$ equals
MathematicsProbabilityTS EAMCETTS EAMCET 2015
Options:
  • A $1 / 2$
  • B $1 / 3$
  • C $1 / 4$
  • D $1 / 6$
Solution:
1323 Upvotes Verified Answer
The correct answer is: $1 / 3$
We have, $n=6$.
It is given that,
$$
\begin{aligned}
& 4 P(X=4)=P(X=2) \\
& \Rightarrow \quad 4 \cdot{ }^6 C_4 p^4 q^2={ }^6 C_2 p^2 q^4 \\
& {\left[\because P(X=r)={ }^n C_r p^r q^{n-r}\right]} \\
& \Rightarrow \quad 4 \times \frac{6 \times 5}{2 \times 1} p^2=\frac{6 \times 5}{2 \times 1} q^2 \\
& \Rightarrow \quad 4 p^2=q^2 \\
& \Rightarrow \quad 2 p=q \\
& \Rightarrow \quad 2 p=1-p \quad[\because q=1-p] \\
& \Rightarrow \quad p=\frac{1}{3} \\
&
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.