Search any question & find its solution
Question:
Answered & Verified by Expert
Let \([x]\) denote the greatest integer not exceeding \(x\). If \(l_1=\lim _{x \rightarrow 2^{+}}\left(x^2+[x]\right)\),
\(l_2=\lim _{x \rightarrow 3^{-}}(2 x-[x])\) and \(l_3=\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\cos x}{x-\frac{\pi}{2}}\right)\), then
Options:
\(l_2=\lim _{x \rightarrow 3^{-}}(2 x-[x])\) and \(l_3=\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\cos x}{x-\frac{\pi}{2}}\right)\), then
Solution:
1025 Upvotes
Verified Answer
The correct answer is:
\(I_3 < I_2 < I_1\)
Given,
\(\begin{aligned}
l_1 & =\lim _{x \rightarrow 2^{+}}\left(x^2+[x]\right) \\
& =\lim _{x \rightarrow 2^{+}}\left(x^2+2\right) \quad\left[\because \text { as } x \rightarrow 2^{+},[x]=2\right] \\
& =4+2 \\
l_1 & =6 \\
l_2 & =\lim _{x \rightarrow 3^{-}}(2 x-[x]) \quad\left[\because \text { as } x \rightarrow 3^{-},[x]=2\right] \\
& =\lim _{x \rightarrow 3^{-}}(2 x-2) \quad \\
& =2(3)-2 \\
l_2 & =4 \\
l_3 & =\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\cos x}{x-\frac{\pi}{2}}\right)
\end{aligned}\)
Put \(x-\frac{\pi}{2}=y\) and as \(x \rightarrow \frac{\pi}{2}\), then \(y \rightarrow 0\)
\(\begin{aligned}
x & =\frac{\pi}{2}+y \\
& =\lim _{y \rightarrow 0} \frac{\cos \left(\frac{\pi}{2}+y\right)}{y} \\
& =\lim _{y \rightarrow 0}-\frac{\sin y}{y} \\
\quad l_3 & =-1 \\
\quad & l_3 < l_2 < l_1
\end{aligned}\)
\(\therefore\) Hence, answer is (d).
\(\begin{aligned}
l_1 & =\lim _{x \rightarrow 2^{+}}\left(x^2+[x]\right) \\
& =\lim _{x \rightarrow 2^{+}}\left(x^2+2\right) \quad\left[\because \text { as } x \rightarrow 2^{+},[x]=2\right] \\
& =4+2 \\
l_1 & =6 \\
l_2 & =\lim _{x \rightarrow 3^{-}}(2 x-[x]) \quad\left[\because \text { as } x \rightarrow 3^{-},[x]=2\right] \\
& =\lim _{x \rightarrow 3^{-}}(2 x-2) \quad \\
& =2(3)-2 \\
l_2 & =4 \\
l_3 & =\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\cos x}{x-\frac{\pi}{2}}\right)
\end{aligned}\)
Put \(x-\frac{\pi}{2}=y\) and as \(x \rightarrow \frac{\pi}{2}\), then \(y \rightarrow 0\)
\(\begin{aligned}
x & =\frac{\pi}{2}+y \\
& =\lim _{y \rightarrow 0} \frac{\cos \left(\frac{\pi}{2}+y\right)}{y} \\
& =\lim _{y \rightarrow 0}-\frac{\sin y}{y} \\
\quad l_3 & =-1 \\
\quad & l_3 < l_2 < l_1
\end{aligned}\)
\(\therefore\) Hence, answer is (d).
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.