Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $y^{\prime}(x)+y(x) g^{\prime}(x)=g(x) g^{\prime}(x) y(0)=0, x \in R$, where $f^{\prime}(x)$ denotes $\frac{d f(x)}{d x}$ and $g(x)$ is a given non-constant differentiable function on $R$ with $g(0)=g(2)=0$. Then, the value of $y$ (2) is...
MathematicsDifferential EquationsJEE AdvancedJEE Advanced 2011 (Paper 2)
Solution:
2080 Upvotes Verified Answer
The correct answer is: 0
$\frac{d y}{d x}+y \cdot g^{\prime}(x)=g(x) g^{\prime}(x)$
$$
\mathrm{IF}=e^{\int g^{\prime}(x) d x}=e^{g(x)}
$$
$\therefore$ Solution is

$$
y\left(e^{g(x)}\right)=\int g(x) \cdot g^{\prime}(x) \cdot e^{g(x)} d x+C
$$
Put $g(x)=t, g^{\prime}(x) d x=d t$
$$
\begin{aligned}
& y\left(e^{g(x)}\right)=\int t \cdot e^t d t+C \\
= & t \cdot e^t-\int 1 \cdot e^t d t+C=t \cdot e^t-e^t+C \\
& y e^{g(x)}=(g(x)-1) e^{g(x)}+C \quad \ldots(\mathrm{i})
\end{aligned}
$$
Given, $y(0)=0, g(0)=g(2)=0$

$\therefore$ Eq. (i) becomes,
$$
\begin{aligned}
& \quad y(0) \cdot e^{g(0)}=(g(0)-1) \cdot e^{g(0)}+C \\
& \Rightarrow \quad 0=(-1) \cdot 1+C \Rightarrow C=1 \\
& \therefore \quad y(x) \cdot e^{g(x)}=(g(x)-1) e^{g(x)}+1 \\
& \Rightarrow \quad y(2) \cdot e^{g(2)}=(g(2)-1) e^{g(2)}+1 \\
& \text { where, } \quad g(2)=0 \\
& \Rightarrow \quad y(2) \cdot 1=(-1) \cdot 1+1 \Rightarrow y(2)=0
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.