Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let y=y(x) be a solution curve of the differential equation y+1tan2xdx+tanxdy+ydx=0, x0,π2. If limx0+xyx=1, then the value of yπ4 is:
MathematicsDifferential EquationsJEE MainJEE Main 2021 (26 Aug Shift 1)
Options:
  • A π4+1
  • B π4-1
  • C π4
  • D -π4
Solution:
1609 Upvotes Verified Answer
The correct answer is: π4

Given:

y+1tan2xdx+tanxdy+ydx=0

y+1tan2x+ydx+tanxdy=0

tanxdydx+y+1tan2x+y=0

dydx+1+ytanx=-ycotx

dydx+ytanx+cotx=-tanx

This is a linear differential equation of the form dydx+Pxy=Qx.

 I.F =e(tanx+cotx)dx

=etan2x+1tanxdx

=esec2xtanxdx

=elogetanx

=tanx x0,π2

Solution is

ytanx=-tan2xdx+c

ytanx=1-sec2xdx+c

ytanx=x-tanx+c

Now,

limx0+xy=1

limx0+xtanxx-tanx+c=1

1(0-0+c)=1c=1

Then the function is

ytanx=x-tanx+1

Put x=π4,

yπ4tanπ4=π4-tanπ4+1

yπ4=π4

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.