Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let y=yx be solution of the differential equation logedydx=3x+4y, with y0=0. If y-23loge2=αloge2, then the value of α is equal to:
MathematicsDifferential EquationsJEE MainJEE Main 2021 (27 Jul Shift 1)
Options:
  • A -14
  • B 14
  • C 2
  • D -12
Solution:
2837 Upvotes Verified Answer
The correct answer is: -14

Given,

logedydx=3x+4y

dydx=e3x·e4y

e-4ydy=e3xdx

e-4y-4=e3x3+C

Given,

y0=0

So,

-14-13=CC=-712

So, the particular solution is

e-4y-4=e3x3-712

e-4y=4e3x-7-3

e4y=37-4e3x4y=ln37-4e3x

4y=n36 when x=-23n2

y=14n12

y=-14n2

So, α=-14

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.