Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert

Let y=yx, y>0, be a solution curve of the differential equation 1+x2dy=yx-ydx. If y0=1 and y22=β, then

MathematicsDifferential EquationsJEE MainJEE Main 2023 (12 Apr Shift 1)
Options:
  • A e3β-1=e3+22
  • B e3β-1=e5+2
  • C eβ-1=e-23+22
  • D eβ-1=e-25+2
Solution:
2346 Upvotes Verified Answer
The correct answer is: e3β-1=e3+22

Given,

1+x2dy=yx-ydx

dydx=x1+x2y-y21+x2

-1y2dydx+x1+x2·1y=11+x2

Now let 1y=t, we get,

-1y2y'=dtdx

So, the equation becomes,

dtdx+x1+x2t=11+x2

Now finding, IF=ex1+x2dx=1+x2

So, solution of the differential equation is given by,

t1+x2=1+x21+x2dx

1y1+x2=11+x2dx

1y1+x2=lnx+x2+1+C

 y0=1C=1

1y1+x2=lnx+x2+1+1

Now for x=22, y=β we get,

3β=ln22+3+1

β=31+ln22+3

3β-1=1+ln22+3

e3β-1=e·eln3+22

e3β-1=e3+22

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.