Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $z$ be a complex number such that $|z|+z=3+i, i=\sqrt{-1}$, then $|z|$ is equal to
MathematicsComplex NumberMHT CETMHT CET 2022 (06 Aug Shift 2)
Options:
  • A $\frac{5}{4}$
  • B $\frac{\sqrt{41}}{4}$
  • C $\frac{\sqrt{34}}{3}$
  • D $\frac{5}{3}$
Solution:
2039 Upvotes Verified Answer
The correct answer is: $\frac{5}{3}$
$\begin{aligned} & |z|+z=3+i \\ & \Rightarrow \sqrt{x^2+y^2}+x+i y=3+i[\text { let } z=x+i y] \\ & \Rightarrow \sqrt{x^2+y^2}+x=3 \text { and } y=1 \\ & \Rightarrow \sqrt{x^2+1^2}+x=3 \\ & \Rightarrow x^2+1=(3-x)^2 \\ & \Rightarrow x=\frac{4}{3} \\ & \Rightarrow|z|=\sqrt{x^2+y^2}=\sqrt{\left(\frac{4}{3}\right)^2+1^2}=\frac{5}{3}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.