Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $z$ be a complex number such that $|z|+z=3+i$

$($ where $i=\sqrt{-1})$

Then $|\mathrm{z}|$ is equal to :
MathematicsComplex NumberJEE MainJEE Main 2019 (11 Jan Shift 2)
Options:
  • A $\frac{\sqrt{34}}{3}$
  • B $\frac{5}{3}$
  • C $\frac{\sqrt{41}}{4}$
  • D $\frac{5}{4}$
Solution:
1261 Upvotes Verified Answer
The correct answer is: $\frac{5}{3}$
Since, $|z|+z=3+i$

Let $z=a+i b,$ then

$$

|z|+z=3+i \Rightarrow \sqrt{a^{2}+b^{2}}+a+i b=3+i

$$

Compare real and imaginary coefficients on both sides

$$

\begin{array}{l}

b=1, \sqrt{a^{2}+b^{2}}+a=3 \\

\sqrt{a^{2}+1}=3-a \\

a^{2}+1=a^{2}+9-6 a \\

6 a=8 \Rightarrow a=\frac{4}{3}

\end{array}

$$

Then,

$$

|z|=\sqrt{\left(\frac{4}{3}\right)^{2}+1}=\sqrt{\frac{16}{9}+1}=\frac{5}{3}

$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.