Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\lim _{n \rightarrow \infty} \frac{1}{n^3} \sum_{k=1}^n\left(k^2 x\right)=$
MathematicsLimitsTS EAMCETTS EAMCET 2023 (14 May Shift 1)
Options:
  • A $\mathbf{X}$
  • B $\frac{x}{2}$
  • C $\frac{x}{3}$
  • D $\frac{x}{4}$
Solution:
1292 Upvotes Verified Answer
The correct answer is: $\frac{x}{3}$
$\lim _{n \rightarrow \infty} \frac{1}{n^3} \sum_{k=1}^n\left(k^2 x\right)$
$\begin{aligned} & =\lim _{n \rightarrow \infty} \frac{1}{n^3}\left(1^2+2^2+\ldots .+n^2\right) x \\ & =\lim _{n \rightarrow \infty} \frac{1}{n^3} \frac{n(n+1)(2 n+1)}{6} \times x \\ & \lim _{n \rightarrow \infty} \frac{x}{6}\left(2+\frac{3}{n}+\frac{1}{n^2}\right)=\frac{2 x}{6}=\frac{x}{3}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.