Search any question & find its solution
Question:
Answered & Verified by Expert
$\lim _{\mathrm{n} \rightarrow \infty} \mathrm{n} \sin \frac{2 \pi}{3 \mathrm{n}} \cdot \cos \frac{2 \pi}{3 \mathrm{n}}$ is
Options:
Solution:
1271 Upvotes
Verified Answer
The correct answer is:
$\frac{2 \pi}{3}$
$\begin{aligned} \lim _{n \rightarrow \infty} n \cdot \sin \frac{2 \pi}{3 n} \cdot \cos \frac{2 \pi}{3 n} \\ &=\lim _{n \rightarrow \infty} n \cdot\left\{\frac{\left(\sin \frac{2 \pi}{3 n}\right)}{\left(\frac{2 \pi}{3 n}\right)}\right\} \cdot \cos \frac{2 \pi}{3 n} \times \frac{2 \pi}{3 n} \\ &=(1) \cdot \cos \left(0^{\circ}\right) \times \frac{2 \pi}{3}\left\{\because \lim _{\theta \rightarrow \infty} \frac{\sin 1 / \theta}{1 / \theta}=1\right\} \\ &=1 \cdot \frac{2 \pi}{3}=\frac{2 \pi}{3} \end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.