Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\lim _{n \rightarrow \infty} \sum_{r=1}^n \tan ^{-1}\left(\frac{2 r}{r^4+r^2+2}\right)=$
MathematicsInverse Trigonometric FunctionsAP EAMCETAP EAMCET 2018 (23 Apr Shift 2)
Options:
  • A $\frac{\pi}{4}$
  • B $\frac{\pi}{2}$
  • C $\frac{-\pi}{4}$
  • D $\frac{-\pi}{2}$
Solution:
1426 Upvotes Verified Answer
The correct answer is: $\frac{\pi}{4}$
Since,
$\begin{aligned}
& \quad r^4+r^2+1=\left(r^2-r+1\right)\left(r^2+r+1\right) \\
& \text { So, } \tan ^{-1}\left(\frac{2 r}{1+\left(r^4+r^2+1\right)}\right) \\
& =\tan ^{-1}\left(r^2+r+1\right)-\tan ^{-1}\left(r^2-r+1\right) \\
& \text { So, } \sum_{r=1}^n \tan ^{-1}\left(\frac{2 r}{r^4+r^2+2}\right) \\
& =\sum_{r=1}^n\left\{\tan ^{-1}\left(r^2+r+1\right)-\tan ^{-1}\left(r^2-r+1\right)\right\} \\
& =\tan ^{-1}\left(n^2+n+1\right)-\tan ^{-1}(1) \\
& =\tan ^{-1} \frac{n^2+n}{1+n^2+n+1}=\tan ^{-1} \frac{n^2+n}{n^2+n+2} \\
& \text { So, } \lim _{n \rightarrow \infty} \sum_{r=1}^n \tan ^{-1}\left(\frac{2 r}{r^4+r^2+2}\right) \\
& =\lim _{n \rightarrow \infty} \tan ^{-1}\left(\frac{n^2+n}{n^2+n+2}\right)=\frac{\pi}{4} .
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.