Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\lim _{x \rightarrow 0} \frac{x a^{x}-x}{1-\cos x}$ is equal to
MathematicsLimitsCOMEDKCOMEDK 2014
Options:
  • A $\log a$
  • B $\frac{l}{2} \log a$
  • C $2 \log a$
  • D $2 \log 2$
Solution:
1440 Upvotes Verified Answer
The correct answer is: $2 \log a$
$\lim _{x \rightarrow 0} \frac{x a^{x}-x}{1-\cos x}=\lim _{x \rightarrow 0} \frac{x\left(a^{x}-1\right)}{2 \sin ^{2} \frac{x}{2}}$
$\left[\cos 2 \theta=1-2 \sin ^{2} \theta\right]$
$=\lim _{x \rightarrow 0} \frac{a^{x}-1}{\left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^{2}}$
$=\frac{\lim _{x \rightarrow 0} 2\left(\frac{a^{x}-1}{x}\right)}{\left[\lim _{x \rightarrow 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}}\right]^{2}}=\text{2log a}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.