Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
limx01-cos2(3x)cos3(4x)sin3(4x)loge2x+15 is equal to
MathematicsLimitsJEE MainJEE Main 2023 (08 Apr Shift 1)
Options:
  • A 15
  • B 9
  • C 18
  • D 24
Solution:
2259 Upvotes Verified Answer
The correct answer is: 18

Given,

limx01-cos2(3x)cos3(4x)sin3(4x)loge2x+15

Now we now that,

limx0sinxx=1, limx01-cosxx2=12 & limx0log1+xx=1

Now using the above formula we get,

limx01-cos23xcos34xsin34xloge2x+15

=limx01-cos3x1+cos3x9x2cos34x9x2sin4x364x32x564x3loge(2x+1)52x5

=limx01-cos3x9x21+cos3xcos34xsin4x4x3loge(2x+1)2x5×9×6432

=12×211315×9×6432

=9×21=18

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.