Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\lim _{x \rightarrow 0}\left(\frac{1+\tan x}{1+\sin x}\right)^{\operatorname{cosec} x}$ is equal to
MathematicsLimitsJEE Main
Options:
  • A $e$
  • B $\frac{1}{e}$
  • C $1$
  • D None of these
Solution:
1569 Upvotes Verified Answer
The correct answer is: $1$
$\begin{aligned} & \text { Given limit }=\lim _{x \rightarrow 0}\left[(1+\tan x)^{\operatorname{cosec} x} \times 1 /(1+\sin x)^{\operatorname{cosec} x}\right] \\ & \left.=\lim _{x \rightarrow 0}\left[\{1+\tan x)^{\cot x}\right\}^{\sec x} \times\left\{1 /(1+\sin x)^{\operatorname{cosec} x}\right\}\right] \\ & =e^{\sec (0)} \cdot \frac{1}{e}=e \cdot \frac{1}{e}=1\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.