Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\lim _{x \rightarrow 0}(\operatorname{cosec} x)^{1 / \log x}$ is equal to :
MathematicsLimitsBITSATBITSAT 2014
Options:
  • A 0
  • B 1
  • C $\frac{1}{e}$
  • D None of these
Solution:
2497 Upvotes Verified Answer
The correct answer is: $\frac{1}{e}$
Let $y=\lim _{x \rightarrow 0}(\operatorname{cosec} x)^{1 / \log x}$

Taking $\log$ on both sides, we get

$\log y=\lim _{x \rightarrow 0} \frac{\log \operatorname{cosec} x}{\log x}\left[\frac{\infty}{\infty}\right.$ form $]$

$=\lim _{x \rightarrow 0} \frac{-\cot x}{1 / x} \quad$ (ByL' Hospital rule)

$=-\lim _{x \rightarrow 0} \frac{x}{\tan x} \quad\left(\because \cot x=\frac{1}{\tan x}\right)$

$\Rightarrow \log y=-1$

$\Rightarrow y=e^{-1}=\frac{1}{e}$

Hence, required limit $=\frac{1}{e}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.