Search any question & find its solution
Question:
Answered & Verified by Expert
$\lim _{x \rightarrow 0}\left(\frac{\sin a x}{\tan b x}\right)$ is equal to
Options:
Solution:
1852 Upvotes
Verified Answer
The correct answer is:
$\frac{a}{b}$
$\lim _{x \rightarrow 0}\left(\frac{\sin a x}{\tan b x}\right)$
$$
\lim _{x \rightarrow 0} a\left(\frac{\sin a x}{a x}\right) \times \lim _{x \rightarrow 0} \frac{1}{\left(\frac{\tan b x}{b x}\right) b}=a \times \frac{1}{b}=\frac{a}{b}
$$
$$
\lim _{x \rightarrow 0} a\left(\frac{\sin a x}{a x}\right) \times \lim _{x \rightarrow 0} \frac{1}{\left(\frac{\tan b x}{b x}\right) b}=a \times \frac{1}{b}=\frac{a}{b}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.