Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\lim _{x \rightarrow 0} \frac{1-\cos \left(x^2+\pi(x+2)\right)}{x^2}=$
MathematicsLimitsTS EAMCETTS EAMCET 2020 (10 Sep Shift 2)
Options:
  • A $\frac{\pi}{2}$
  • B $\frac{\pi^2}{4}$
  • C $\frac{\pi^2}{2}$
  • D $\frac{\pi}{4}$
Solution:
1223 Upvotes Verified Answer
The correct answer is: $\frac{\pi^2}{2}$
We have,
$\lim _{x \rightarrow 0} \frac{1-\cos \left(x^2+\pi(x+2)\right.}{x^2}$
$\lim _{x \rightarrow 0} \frac{1-\cos \left(2 \pi+\pi x+x^2\right)}{x^2}$
$\lim _{x \rightarrow 0} \frac{1-\cos \left(\pi x+x^2\right)}{x^2} \quad[\because \cos (2 \pi+\theta)=\cos \theta]$
Applying 'L' Hospital rule
$\lim _{x \rightarrow 0} \frac{\sin \left(\pi x+x^2\right)(2 x+\pi)}{2 x}$
$=\lim _{x \rightarrow 0} \sin \left(\pi x+x^2\right)+\lim _{x \rightarrow 0} \frac{\pi \sin \left(\pi x+x^2\right)}{2 x}$
$=0+\frac{\pi}{2} \lim _{x \rightarrow 0} \frac{\sin \left(\pi x+x^2\right)}{x}$
Again apply 'L' Hospital rule
$=\frac{\pi}{2} \lim _{x \rightarrow 0} \frac{\cos \left(\pi x+x^2\right)(2 x+\pi)}{1}=\frac{\pi}{2} \times \pi=\frac{\pi^2}{2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.