Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\lim _{x \rightarrow 0} \frac{x e^x-\log (1+x)}{x^2}$ equals
MathematicsLimitsJEE Main
Options:
  • A $\frac{2}{3}$
  • B $\frac{1}{3}$
  • C $\frac{1}{2}$
  • D $\frac{3}{2}$
Solution:
2559 Upvotes Verified Answer
The correct answer is: $\frac{3}{2}$
$\text { Let } y=\lim _{x \rightarrow 0} \frac{x e^x-\log (1+x)}{x^2},\left(\frac{0}{0} \text { form }\right)$
Applying L-Hospital's rule,
$\begin{aligned}
& y=\lim _{x \rightarrow 0} \frac{e^x+x e^x-\frac{1}{1+x}}{2 x},\left(\frac{0}{0} \text { form }\right) \\
& y=\lim _{x \rightarrow 0} \frac{1}{2}\left[e^x+e^x+x e^x+\frac{1}{(1+x)^2}\right] \\
& y=\lim _{x \rightarrow 0} \frac{1}{2}[1+1+0+1]=\frac{3}{2}
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.