Search any question & find its solution
Question:
Answered & Verified by Expert
$\lim _{x \rightarrow 0} \sqrt{\frac{x-\sin x}{x+\sin ^{2} x}}$ is equal to
Options:
Solution:
2888 Upvotes
Verified Answer
The correct answer is:
0
$\lim _{x \rightarrow 0} \sqrt{\frac{x-\sin x}{x+\sin ^{2} x}=\lim _{x \rightarrow 0} \sqrt{\frac{1-\frac{\sin x}{x}}{1+\frac{\sin ^{2} x}{x}}}}$
$=\lim _{x \rightarrow 0} \sqrt{\frac{1-\frac{\sin x}{x}}{1+\left(\frac{\sin x}{x}\right) \sin x}}=\sqrt{\frac{1-1}{1+1 \times 0}}=0$
$=\lim _{x \rightarrow 0} \sqrt{\frac{1-\frac{\sin x}{x}}{1+\left(\frac{\sin x}{x}\right) \sin x}}=\sqrt{\frac{1-1}{1+1 \times 0}}=0$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.