Search any question & find its solution
Question:
Answered & Verified by Expert
$\lim _{x \rightarrow 2}\left[\left(x^2-4 x+4\right) \cos \left(\frac{2}{x-2}\right)+\frac{x^2-4}{x^3-2 x-4}\right]=$
Options:
Solution:
1794 Upvotes
Verified Answer
The correct answer is:
$\frac{2}{5}$
$\begin{aligned} & \lim _{x \rightarrow 2}\left[\left(x^2-4 x+4\right) \cos \left(\frac{2}{x-2}\right)+\frac{x^2-4}{x^3-2 x-4}\right] \\ & \Rightarrow \lim _{x \rightarrow 2}\left(x^2-4 x+4\right) \cos \left(\frac{2}{x-2}\right)+\lim _{x \rightarrow 2} \frac{x^2-4}{x^3-2 x-4} \\ & \Rightarrow 0 \times[-1,1]+\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)\left(x^2+2 x+2\right)} \Rightarrow 0+\frac{2}{5}=\frac{2}{5}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.