Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\lim _{x \rightarrow \frac{\pi}{4}} \frac{\int_2^{\sec ^2 x} f(t) d t}{x^2-\frac{\pi^2}{16}}$ equals
MathematicsLimitsJEE AdvancedJEE Advanced 2007 (Paper 1)
Options:
  • A
    $\frac{8}{\pi} f(2)$
  • B
    $\frac{2}{\pi} f(2)$
  • C
    $\frac{2}{\pi} f\left(\frac{1}{2}\right)$
  • D
    $4 f(2)$
Solution:
1670 Upvotes Verified Answer
The correct answer is:
$\frac{8}{\pi} f(2)$
$\lim _{x \rightarrow \frac{x}{4}} \frac{\int_2^{\sec ^2 x} f(t) d t}{x^2-\frac{\pi^2}{16}}$ $\left[\therefore \frac{0}{0}\right.$ form $]$
Let
$$
\begin{array}{ll}
\text { Let } & L=\lim _{x \rightarrow \frac{x}{4}} \frac{f\left(\sec ^2 x\right) 2 \sec x \sec x \tan x}{2 x} \\
\therefore & L=\frac{2 f(2)}{\pi / 4}=\frac{8 f(2)}{\pi}
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.